Cranfield UNIVERSITY

Philip David Brierley

## Some Practical Applications of Neural Networks in the Electricity Industry

School of Mechanical Engineering

**Engineering Doctorate** 

**Cranfield University** 

School of Mechanical Engineering

Applied Energy and Optical Diagnostics Group

EngD

1997/98

Philip David Brierley

# Some Practical Applications of Neural Networks in the Electricity Industry

Supervisors Dr. W.J. Batty Professor D. Myddelton

September 1998

This thesis is submitted in partial fulfilment of the requirements for the Degree of Doctor of Engineering

### ABSTRACT

The development of an optimising model predictive controller for domestic storage radiators was the ultimate goal of this research project. Neural networks are used to create empirical models that are used to predict the likely temperature response of a room to the charging of a storage radiator. The charging strategy can then be optimised based on the real-time price of electricity.

Neural network modelling is investigated by looking at the load forecasting problem. It is shown how accurate neural models can be created and demonstrated exactly how they process the data. Very specific rules are extracted from the neural network that can model the load to a reasonable accuracy.

An efficient optimisation technique is sought by optimising the charging of a domestic hot water tank based on actual consumption data and the pool price of electricity. Initially genetic algorithms were tried but their weaknesses are demonstrated. A stochastic hill climbing method was found to be more suitable. Monetary saving of 40% over the existing E7 tariff was common.

The modelling and optimisation are brought together in a storage radiator simulation. There are improvements in cost and electricity consumption over E7 primarily due to the ability to look ahead and avoid overheating.

A prototype neural controller is developed and tested in a real house. The results are very encouraging.

Declaration

All work in this thesis and the resulting publications are the sole work of the author unless otherwise stated

To my Grandparents



Tommy Brown, Fulchester United Supremo

#### Acknowledgements

This research is a direct result of the forward thinking of Mr Andy Robinson at Eastern Electricity. I am sincerely grateful to him, Eastern and my supervisor Dr. Batty for creating the opportunity for me pursue what was an interesting project.

I am grateful to Liz Cutting and Dave Murdin at Eastern for providing me with the electricity consumption data and allowing the results to be published. Thanks again to Andy Robinson for the water data and the provision of the data logging equipment.

The Eastern Region Energy Group, The Royal Academy of Engineers and the Engineering Doctorate Centre have all contributed financially so that I could attend conferences and visit other academic institutions.

Thanks to Professor Pierre-Yves Glorennec for allowing me to visit him at INSA de Rennes and for inspiring some ideas in my fledgling days when I didn't know why, what or how.

Thanks to Malcolm Clapp and Glen Baglin at Satchwell Controls for providing the control equipment hardware. I am very grateful to Andrew Lewis and Jonathan Lawson for the time they spent helping me interface all the hardware and software to create the neural controller.

Thanks to Dimplex for the donation of a storage heater.

Finally, but by no means least, thanks to Sharon for all the commuting you have endured over the last three years.

### CONTENTS

| 1 INTR                                           | ODUCTION                                                                                                                                   | 1                                |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1.1                                              | Reasons behind this Thesis                                                                                                                 | 1                                |
| 1.2                                              | Nature of the Work                                                                                                                         | 3                                |
| 1.3                                              | Chapter Contents                                                                                                                           | 4                                |
| 1.4                                              | Contribution of this Thesis                                                                                                                | 6                                |
| 1.5                                              | Publications from this Thesis                                                                                                              | 7                                |
| 1.6                                              | Outcomes from this Thesis                                                                                                                  | 8                                |
| 2 FEED                                           | DFORWARD NEURAL NETWORKS                                                                                                                   | 9                                |
| 2.1                                              | What are Neural Networks?                                                                                                                  | 9                                |
| 2.2                                              | Why use Neural Networks?                                                                                                                   | 10                               |
| 2.3                                              | How do Neural Networks Process Information?                                                                                                | 12                               |
| 2.4<br>2.4.1<br>2.4.2<br>2.4.3<br>2.4.4<br>2.4.5 | Things to be aware of<br>Over-fitting and Generalisation<br>Extrapolation<br>The Function being Minimised<br>Local Minima<br>Data Encoding | 15<br>15<br>16<br>17<br>18<br>20 |
| 2.5                                              | Chapter Summary                                                                                                                            | 21                               |
| 3 ELEC                                           | CTRIC LOAD MODELLING                                                                                                                       | 22                               |
| 3.1                                              | The Data being Modelled                                                                                                                    | 22                               |
| 3.2                                              | Why Forecast Electricity Demand?                                                                                                           | 25                               |
| 3.3                                              | Previous Work                                                                                                                              | 27                               |
| 3.4                                              | Network Used                                                                                                                               | 28                               |
| 3.5                                              | Total Daily Load Model                                                                                                                     | 29                               |
| 3.6                                              | Over-fitting and Generalisation                                                                                                            | 37                               |
| 3.7<br>3.7.1<br>3.7.2<br>3.7.3<br>3.7.4<br>3.7.5 | Rule Extraction<br>Day of the Week<br>Time of Year<br>Growth<br>Weather Factors<br>Holidays                                                | 40<br>41<br>43<br>44<br>45<br>48 |
| 3.8                                              | Model Comparisons                                                                                                                          | 51                               |

| 3.9<br>3.9.1<br>3.9.2<br>3.9.3<br>3.9.4<br>3.9.5 | Half Hourly Model<br>Initial Input Data<br>Results<br>Past Loads<br>How the Model is Working<br>Extracting the Growth               | 53<br>53<br>54<br>61<br>62<br>63 |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 3.10                                             | Populations of Models                                                                                                               | 64                               |
| 3.11<br>3.11.1<br>3.11.2                         | Traditional Load Forecasting Methods<br>Multiple Linear Regression<br>Stochastic Time Series                                        | 65<br>67<br>68                   |
| 3.12                                             | Load Forecasting in Practice                                                                                                        | 70                               |
| 3.13                                             | Chapter Summary                                                                                                                     | 71                               |
| 4 GEN                                            | ETIC INSPIRED OPTIMISATION                                                                                                          | 73                               |
| 4.1                                              | What are Genetic Algorithms?                                                                                                        | 73                               |
| 4.2                                              | How do GAs Work?                                                                                                                    | 74                               |
| 4.3                                              | The GA Operators                                                                                                                    | 75                               |
| 4.4<br>4.4.1<br>4.4.2<br>4.4.3<br>4.4.4<br>4.4.5 | Implementation<br>Encoding<br>Population Size<br>Selection<br>Crossover<br>Mutation                                                 | 76<br>76<br>77<br>78<br>79<br>79 |
| 4.5<br>4.5.1<br>4.5.2<br>4.5.3<br>4.5.4          | Experiments with GAs<br>Chinese Hat Optimisation Problem<br>Results<br>Other Iterated Hill-Climbing Methods<br>Royal Road Functions | 79<br>79<br>80<br>85<br>88       |
| 4.6                                              | Chapter Summary                                                                                                                     | 98                               |
| 5 DOM                                            | ESTIC HOT WATER OPTIMISATION                                                                                                        | 101                              |
| 5.1                                              | Introduction                                                                                                                        | 101                              |
| 5.2                                              | Model to be Optimised                                                                                                               | 103                              |
| 5.3                                              | Simulated Water Heating Model                                                                                                       | 105                              |
| 5.4                                              | Data Used                                                                                                                           | 106                              |
| 5.5                                              | Optimisation Procedure                                                                                                              | 107                              |
| 5.6                                              | Profiling Usage Patterns                                                                                                            | 108                              |
| 5.7                                              | Results                                                                                                                             | 109                              |
| 5.8<br>5.8.1<br>5.8.2<br>5.8.3                   | Discussion of Results<br>Does Water Storage Save Money ?<br>How did the Profiling Perform ?<br>How Much Money could be Saved?       | 121<br>121<br>121<br>123         |

| 5.8.4 | Why is the Optimised Schedule Sometimes Worse? | 123 |
|-------|------------------------------------------------|-----|
| 5.8.5 | How is the Optimisation Working                | 125 |
| 5.8.6 | Local Minima                                   | 126 |
| 5.9   | Chapter Summary                                | 128 |

| 6 STOP                                  | RAGE RADIATOR CONTROLLER SIMULATION                                                                                                                                                                           | 129                             |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 6.1                                     | What are Storage Radiators?                                                                                                                                                                                   | 129                             |
| 6.2                                     | Room Thermal Model                                                                                                                                                                                            | 131                             |
| 6.3                                     | Neural Network Emulator                                                                                                                                                                                       | 132                             |
| 6.4                                     | Optimisation Procedure                                                                                                                                                                                        | 134                             |
| 6.5                                     | Simulation Procedure                                                                                                                                                                                          | 136                             |
| 6.6<br>6.6.1<br>6.6.2<br>6.6.3<br>6.6.4 | Results<br>Did the Controller Work?<br>Why do the Large Initial Errors Occur?<br>Performance of the 1-step-ahead Predictor as a Recursive 48-step-ahead Predictor<br>Comparison with other Heating Strategies | 138<br>138<br>139<br>141<br>142 |
| 6.7                                     | Emulator Improvements                                                                                                                                                                                         | 145                             |
| 6.8                                     | Chapter Summary                                                                                                                                                                                               | 145                             |

| 7 REAL | - NEURAL STORAGE RADIATOR CONTROL | 146 |
|--------|-----------------------------------|-----|
| 7.1    | Background                        | 146 |
| 7.2    | Data Analysis                     | 150 |
| 7.3    | Neural Controller                 | 155 |
| 7.4    | Chapter Summary                   | 159 |

| 8 | 8 PROJECT OVERVIEW 1 |                                                  |     |
|---|----------------------|--------------------------------------------------|-----|
| 8 | .1                   | About this Chapter                               | 160 |
| 8 | .2                   | Load Forecasting                                 | 161 |
| 8 | .3                   | Water Optimisation                               | 161 |
| 8 | .4                   | Intelligent Heating Control                      | 162 |
| 8 | .5                   | Experiences of Pursuing a Neural Network Project | 162 |
| 8 | .6                   | Cost Analysis                                    | 164 |
| 8 | .7                   | The Future                                       | 164 |
|   |                      |                                                  |     |

| REFERENCES |   |                                     | 165 |
|------------|---|-------------------------------------|-----|
| Appendix   | А | Back Propagation Weight Update Rule | 174 |

| В | MLP Code                          | 183 |
|---|-----------------------------------|-----|
| С | More on MLPs                      | 187 |
| D | Genetic Algorithm Code            | 195 |
| E | Water Optimisation Code           | 198 |
| F | Storage Heater Thermal Model Code | 202 |